# notebookapp_changefilmstrips.py
'''
This file contains functions for loading and interacting with data in the
change filmstrips notebook, inside the Real_world_examples folder.
Available functions:
run_filmstrip_app
Last modified: September 2021
'''
# Load modules
import os
import dask
import datacube
import numpy as np
import pandas as pd
import xarray as xr
import matplotlib.pyplot as plt
from odc.algo import xr_geomedian
from odc.ui import select_on_a_map
from dask.utils import parse_bytes
from datacube.utils.geometry import CRS
from datacube.utils.rio import configure_s3_access
from datacube.utils.dask import start_local_dask
from ipyleaflet import basemaps, basemap_to_tiles
# Load utility functions
import sys
sys.path.insert(1, '../Tools/')
from dea_tools.datahandling import load_ard, mostcommon_crs
from dea_tools.coastal import tidal_tag
from dea_tools.dask import create_local_dask_cluster
[docs]
def run_filmstrip_app(output_name,
time_range,
time_step,
tide_range=(0.0, 1.0),
resolution=(-30, 30),
max_cloud=50,
ls7_slc_off=False,
size_limit=200):
'''
An interactive app that allows the user to select a region from a
map, then load Digital Earth Australia Landsat data and combine it
using the geometric median ("geomedian") statistic to reveal the
median or 'typical' appearance of the landscape for a series of
time periods.
The results for each time period are combined into a 'filmstrip'
plot which visualises how the landscape has changed in appearance
across time, with a 'change heatmap' panel highlighting potential
areas of greatest change.
For coastal applications, the analysis can be customised to select
only satellite images obtained during a specific tidal range
(e.g. low, average or high tide).
Last modified: June 2020
Parameters
----------
output_name : str
A name that will be used to name the output filmstrip plot file.
time_range : tuple
A tuple giving the date range to analyse
(e.g. `time_range = ('1988-01-01', '2017-12-31')`).
time_step : dict
This parameter sets the length of the time periods to compare
(e.g. `time_step = {'years': 5}` will generate one filmstrip
plot for every five years of data; `time_step = {'months': 18}`
will generate one plot for each 18 month period etc. Time
periods are counted from the first value given in `time_range`.
tide_range : tuple, optional
An optional parameter that can be used to generate filmstrip
plots based on specific ocean tide conditions. This can be
valuable for analysing change consistently along the coast.
For example, `tide_range = (0.0, 0.2)` will select only
satellite images acquired at the lowest 20% of tides;
`tide_range = (0.8, 1.0)` will select images from the highest
20% of tides. The default is `tide_range = (0.0, 1.0)` which
will select all images regardless of tide.
resolution : tuple, optional
The spatial resolution to load data. The default is
`resolution = (-30, 30)`, which will load data at 30 m pixel
resolution. Increasing this (e.g. to `resolution = (-100, 100)`)
can be useful for loading large spatial extents.
max_cloud : int, optional
This parameter can be used to exclude satellite images with
excessive cloud. The default is `50`, which will keep all images
with less than 50% cloud.
ls7_slc_off : bool, optional
An optional boolean indicating whether to include data from
after the Landsat 7 SLC failure (i.e. SLC-off). Defaults to
False, which removes all Landsat 7 observations > May 31 2003.
size_limit : int, optional
An optional size limit for the area selection in sq km.
Defaults to 200 sq km.
Returns
-------
ds_geomedian : xarray Dataset
An xarray dataset containing geomedian composites for each
timestep in the analysis.
'''
########################
# Select and load data #
########################
# Define centre_coords as a global variable
global centre_coords
# Test if centre_coords is in the global namespace;
# use default value if it isn't
if 'centre_coords' not in globals():
centre_coords = (-33.9719, 151.1934)
# Plot interactive map to select area
basemap = basemap_to_tiles(basemaps.Esri.WorldImagery)
geopolygon = select_on_a_map(height='600px',
layers=(basemap,),
center=centre_coords , zoom=12)
# Set centre coords based on most recent selection to re-focus
# subsequent data selections
centre_coords = geopolygon.centroid.points[0][::-1]
# Test size of selected area
area = geopolygon.to_crs(crs=CRS('epsg:3577')).area / 1000000
if area > size_limit:
print(f'Warning: Your selected area is {area:.00f} sq km. '
f'Please select an area of less than {size_limit} sq km.'
f'\nTo select a smaller area, re-run the cell '
f'above and draw a new polygon.')
else:
print('Starting analysis...')
# Connect to datacube database
dc = datacube.Datacube(app='Change_filmstrips')
# Configure local dask cluster
create_local_dask_cluster()
# Obtain native CRS
crs = mostcommon_crs(dc=dc,
product='ga_ls5t_ard_3',
query={'time': '1990',
'geopolygon': geopolygon})
# Create query based on time range, area selected, custom params
query = {'time': time_range,
'geopolygon': geopolygon,
'output_crs': crs,
'gqa_iterative_mean_xy': [0, 1],
'cloud_cover': [0, max_cloud],
'resolution': resolution,
'dask_chunks': {'time': 1, 'x': 2000, 'y': 2000},
'align': (resolution[1] / 2.0, resolution[1] / 2.0)}
# Load data from all three Landsats
ds = load_ard(dc=dc,
measurements=['nbart_red',
'nbart_green',
'nbart_blue'],
products=['ga_ls5t_ard_3',
'ga_ls7e_ard_3',
'ga_ls8c_ard_3'],
min_gooddata=0.0,
ls7_slc_off=ls7_slc_off,
**query)
# Optionally calculate tides for each timestep in the satellite
# dataset and drop any observations out side this range
if tide_range != (0.0, 1.0):
ds = tidal_tag(ds=ds, tidepost_lat=None, tidepost_lon=None)
min_tide, max_tide = ds.tide_height.quantile(tide_range).values
ds = ds.sel(time = (ds.tide_height >= min_tide) &
(ds.tide_height <= max_tide))
ds = ds.drop('tide_height')
print(f' Keeping {len(ds.time)} observations with tides '
f'between {min_tide:.2f} and {max_tide:.2f} m')
# Create time step ranges to generate filmstrips from
bins_dt = pd.date_range(start=time_range[0],
end=time_range[1],
freq=pd.DateOffset(**time_step))
# Bin all satellite observations by timestep. If some observations
# fall outside the upper bin, label these with the highest bin
labels = bins_dt.astype('str')
time_steps = (pd.cut(ds.time.values, bins_dt, labels = labels[:-1])
.add_categories(labels[-1])
.fillna(labels[-1]))
time_steps_var = xr.DataArray(time_steps, coords=[ds.time],
name='timestep')
# Resample data temporally into time steps, and compute geomedians
geomedian_ds = (ds.groupby(time_steps_var)
.apply(lambda ds_subset:
xr_geomedian(ds_subset,
num_threads=1,
eps=0.2 * (1 / 10_000),
nocheck=True)))
print('\nGenerating geomedian composites and plotting '
'filmstrips... (click the Dashboard link above for status)')
geomedian_ds = geomedian_ds.compute()
# Reset CRS that is lost during geomedian compositing
geomedian_ds.attrs['crs'] = ds.crs
############
# Plotting #
############
# Convert to array and extract vmin/vmax
output_array = geomedian_ds[['nbart_red', 'nbart_green',
'nbart_blue']].to_array()
percentiles = output_array.quantile(q=(0.02, 0.98)).values
# Compute heatmap by first taking the log of the array (so
# change in dark areas can be identified), then computing
# standard deviation between all timesteps
heatmap_ds = (np.log(output_array)
.std(dim=['timestep'])
.mean(dim='variable'))
heatmap_ds.attrs['crs'] = ds.crs
# Create the plot with one subplot more than timesteps in the
# dataset. Figure width is set based on the number of subplots
# and aspect ratio
n_obs = output_array.sizes['timestep']
ratio = output_array.sizes['x'] / output_array.sizes['y']
fig, axes = plt.subplots(1, n_obs + 1,
figsize=(5 * ratio * (n_obs + 1), 5))
fig.subplots_adjust(wspace=0.05, hspace=0.05)
# If 'spatial_ref' coord exists, drop it before plotting
if 'spatial_ref' in output_array.coords:
output_array = output_array.drop('spatial_ref')
# Add timesteps to the plot, set aspect to equal to preserve shape
for i, ax_i in enumerate(axes.flatten()[:n_obs]):
output_array.isel(timestep=i).plot.imshow(ax=ax_i,
vmin=percentiles[0],
vmax=percentiles[1])
ax_i.get_xaxis().set_visible(False)
ax_i.get_yaxis().set_visible(False)
ax_i.set_aspect('equal')
# Add change heatmap panel to final subplot
heatmap_ds.plot.imshow(ax=axes.flatten()[-1],
robust=True,
cmap='magma',
add_colorbar=False)
axes.flatten()[-1].get_xaxis().set_visible(False)
axes.flatten()[-1].get_yaxis().set_visible(False)
axes.flatten()[-1].set_aspect('equal')
axes.flatten()[-1].set_title('Change heatmap')
# Export to file
date_string = '_'.join(time_range)
ts_v = list(time_step.values())[0]
ts_k = list(time_step.keys())[0]
fig.savefig(f'filmstrip_{output_name}_{date_string}_{ts_v}{ts_k}.png',
dpi=150,
bbox_inches='tight',
pad_inches=0.1)
return geomedian_ds, heatmap_ds