Source code for dea_tools.bandindices

'''
Calculating band indices from remote sensing data (NDVI, NDWI etc).

License: The code in this notebook is licensed under the Apache License,
Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0). Digital Earth
Australia data is licensed under the Creative Commons by Attribution 4.0
license (https://creativecommons.org/licenses/by/4.0/).

Contact: If you need assistance, please post a question on the Open Data
Cube Discord chat (https://discord.com/invite/4hhBQVas5U) or on the GIS Stack
Exchange (https://gis.stackexchange.com/questions/ask?tags=open-data-cube)
using the `open-data-cube` tag (you can view previously asked questions
here: https://gis.stackexchange.com/questions/tagged/open-data-cube).

If you would like to report an issue with this script, you can file one
on GitHub (https://github.com/GeoscienceAustralia/dea-notebooks/issues/new).

Last modified: June 2023
'''

# Import required packages
import warnings
import numpy as np

# Define custom functions
[docs] def calculate_indices(ds, index=None, collection=None, custom_varname=None, normalise=True, drop=False, inplace=False): """ Takes an xarray dataset containing spectral bands, calculates one of a set of remote sensing indices, and adds the resulting array as a new variable in the original dataset. Note: by default, this function will create a new copy of the data in memory. This can be a memory-expensive operation, so to avoid this, set `inplace=True`. Last modified: June 2023 Parameters ---------- ds : xarray Dataset A two-dimensional or multi-dimensional array with containing the spectral bands required to calculate the index. These bands are used as inputs to calculate the selected water index. index : str or list of strs A string giving the name of the index to calculate or a list of strings giving the names of the indices to calculate: * ``'AWEI_ns'`` (Automated Water Extraction Index, no shadows, Feyisa 2014) * ``'AWEI_sh'`` (Automated Water Extraction Index, shadows, Feyisa 2014) * ``'BAEI'`` (Built-Up Area Extraction Index, Bouzekri et al. 2015) * ``'BAI'`` (Burn Area Index, Martin 1998) * ``'BSI'`` (Bare Soil Index, Rikimaru et al. 2002) * ``'BUI'`` (Built-Up Index, He et al. 2010) * ``'CMR'`` (Clay Minerals Ratio, Drury 1987) * ``'EVI'`` (Enhanced Vegetation Index, Huete 2002) * ``'FMR'`` (Ferrous Minerals Ratio, Segal 1982) * ``'IOR'`` (Iron Oxide Ratio, Segal 1982) * ``'LAI'`` (Leaf Area Index, Boegh 2002) * ``'MNDWI'`` (Modified Normalised Difference Water Index, Xu 1996) * ``'MSAVI'`` (Modified Soil Adjusted Vegetation Index, Qi et al. 1994) * ``'NBI'`` (New Built-Up Index, Jieli et al. 2010) * ``'NBR'`` (Normalised Burn Ratio, Lopez Garcia 1991) * ``'NDBI'`` (Normalised Difference Built-Up Index, Zha 2003) * ``'NDCI'`` (Normalised Difference Chlorophyll Index, Mishra & Mishra, 2012) * ``'NDMI'`` (Normalised Difference Moisture Index, Gao 1996) * ``'NDSI'`` (Normalised Difference Snow Index, Hall 1995) * ``'NDTI'`` (Normalise Difference Tillage Index, Van Deventeret et al. 1997) * ``'NDTI2'`` (Normalised Difference Turbidity Index, Lacaux et al., 2007) * ``'NDVI'`` (Normalised Difference Vegetation Index, Rouse 1973) * ``'NDWI'`` (Normalised Difference Water Index, McFeeters 1996) * ``'SAVI'`` (Soil Adjusted Vegetation Index, Huete 1988) * ``'TCB'`` (Tasseled Cap Brightness, Crist 1985) * ``'TCG'`` (Tasseled Cap Greeness, Crist 1985) * ``'TCW'`` (Tasseled Cap Wetness, Crist 1985) * ``'TCB_GSO'`` (Tasseled Cap Brightness, Nedkov 2017) * ``'TCG_GSO'`` (Tasseled Cap Greeness, Nedkov 2017) * ``'TCW_GSO'`` (Tasseled Cap Wetness, Nedkov 2017) * ``'WI'`` (Water Index, Fisher 2016) * ``'kNDVI'`` (Non-linear Normalised Difference Vegation Index, Camps-Valls et al. 2021) collection : str An string that tells the function what data collection is being used to calculate the index. This is necessary because different collections use different names for bands covering a similar spectra. Valid options are: * ``'ga_ls_3'`` (for GA Landsat Collection 3) * ``'ga_s2_3'`` (for GA Sentinel 2 Collection 3) * ``'ga_gm_3'`` (for GA Geomedian Collection 3) custom_varname : str, optional By default, the original dataset will be returned with a new index variable named after `index` (e.g. 'NDVI'). To specify a custom name instead, you can supply e.g. `custom_varname='custom_name'`. Defaults to None, which uses `index` to name the variable. normalise : bool, optional Some coefficient-based indices (e.g. ``'WI'``, ``'BAEI'``, ``'AWEI_ns'``, ``'AWEI_sh'``, ``'TCW'``, ``'TCG'``, ``'TCB'``, ``'TCW_GSO'``, ``'TCG_GSO'``, ``'TCB_GSO'``, ``'EVI'``, ``'LAI'``, ``'SAVI'``, ``'MSAVI'``) produce different results if surface reflectance values are not scaled between 0.0 and 1.0 prior to calculating the index. Setting `normalise=True` first scales values to a 0.0-1.0 range by dividing by 10000.0. Defaults to True. drop : bool, optional Provides the option to drop the original input data, thus saving space. if drop = True, returns only the index and its values. inplace: bool, optional If `inplace=True`, calculate_indices will modify the original array in-place, adding bands to the input dataset. The default is `inplace=False`, which will instead make a new copy of the original data (and use twice the memory). Returns ------- ds : xarray Dataset The original xarray Dataset inputted into the function, with a new varible containing the remote sensing index as a DataArray. If drop = True, the new variable/s as DataArrays in the original Dataset. """ # Set ds equal to a copy of itself in order to prevent the function # from editing the input dataset. This can prevent unexpected # behaviour though it uses twice as much memory. if not inplace: ds = ds.copy(deep=True) # Capture input band names in order to drop these if drop=True if drop: bands_to_drop=list(ds.data_vars) print(f'Dropping bands {bands_to_drop}') # Dictionary containing remote sensing index band recipes index_dict = { # Normalised Difference Vegation Index, Rouse 1973 'NDVI': lambda ds: (ds.nir - ds.red) / (ds.nir + ds.red), # Non-linear Normalised Difference Vegation Index, # Camps-Valls et al. 2021 'kNDVI': lambda ds: np.tanh(((ds.nir - ds.red) / (ds.nir + ds.red)) ** 2), # Enhanced Vegetation Index, Huete 2002 'EVI': lambda ds: ((2.5 * (ds.nir - ds.red)) / (ds.nir + 6 * ds.red - 7.5 * ds.blue + 1)), # Leaf Area Index, Boegh 2002 'LAI': lambda ds: (3.618 * ((2.5 * (ds.nir - ds.red)) / (ds.nir + 6 * ds.red - 7.5 * ds.blue + 1)) - 0.118), # Soil Adjusted Vegetation Index, Huete 1988 'SAVI': lambda ds: ((1.5 * (ds.nir - ds.red)) / (ds.nir + ds.red + 0.5)), # Mod. Soil Adjusted Vegetation Index, Qi et al. 1994 'MSAVI': lambda ds: ((2 * ds.nir + 1 - ((2 * ds.nir + 1)**2 - 8 * (ds.nir - ds.red))**0.5) / 2), # Normalised Difference Moisture Index, Gao 1996 'NDMI': lambda ds: (ds.nir - ds.swir1) / (ds.nir + ds.swir1), # Normalised Burn Ratio, Lopez Garcia 1991 'NBR': lambda ds: (ds.nir - ds.swir2) / (ds.nir + ds.swir2), # Burn Area Index, Martin 1998 'BAI': lambda ds: (1.0 / ((0.10 - ds.red) ** 2 + (0.06 - ds.nir) ** 2)), # Normalised Difference Chlorophyll Index, # (Mishra & Mishra, 2012) 'NDCI': lambda ds: (ds.red_edge_1 - ds.red) / (ds.red_edge_1 + ds.red), # Normalised Difference Snow Index, Hall 1995 'NDSI': lambda ds: (ds.green - ds.swir1) / (ds.green + ds.swir1), # Normalised Difference Tillage Index, # Van Deventer et al. 1997 'NDTI': lambda ds: (ds.swir1 - ds.swir2) / (ds.swir1 + ds.swir2), # Normalised Difference Turbidity Index, # Lacaux et al., 2007 'NDTI2': lambda ds: (ds.red - ds.green) / (ds.red + ds.green), # Normalised Difference Water Index, McFeeters 1996 'NDWI': lambda ds: (ds.green - ds.nir) / (ds.green + ds.nir), # Modified Normalised Difference Water Index, Xu 2006 'MNDWI': lambda ds: (ds.green - ds.swir1) / (ds.green + ds.swir1), # Normalised Difference Built-Up Index, Zha 2003 'NDBI': lambda ds: (ds.swir1 - ds.nir) / (ds.swir1 + ds.nir), # Built-Up Index, He et al. 2010 'BUI': lambda ds: ((ds.swir1 - ds.nir) / (ds.swir1 + ds.nir)) - ((ds.nir - ds.red) / (ds.nir + ds.red)), # Built-up Area Extraction Index, Bouzekri et al. 2015 'BAEI': lambda ds: (ds.red + 0.3) / (ds.green + ds.swir1), # New Built-up Index, Jieli et al. 2010 'NBI': lambda ds: (ds.swir1 + ds.red) / ds.nir, # Bare Soil Index, Rikimaru et al. 2002 'BSI': lambda ds: ((ds.swir1 + ds.red) - (ds.nir + ds.blue)) / ((ds.swir1 + ds.red) + (ds.nir + ds.blue)), # Automated Water Extraction Index (no shadows), Feyisa 2014 'AWEI_ns': lambda ds: (4 * (ds.green - ds.swir1) - (0.25 * ds.nir * + 2.75 * ds.swir2)), # Automated Water Extraction Index (shadows), Feyisa 2014 'AWEI_sh': lambda ds: (ds.blue + 2.5 * ds.green - 1.5 * (ds.nir + ds.swir1) - 0.25 * ds.swir2), # Water Index, Fisher 2016 'WI': lambda ds: (1.7204 + 171 * ds.green + 3 * ds.red - 70 * ds.nir - 45 * ds.swir1 - 71 * ds.swir2), # Tasseled Cap Wetness, Crist 1985 'TCW': lambda ds: (0.0315 * ds.blue + 0.2021 * ds.green + 0.3102 * ds.red + 0.1594 * ds.nir + -0.6806 * ds.swir1 + -0.6109 * ds.swir2), # Tasseled Cap Greeness, Crist 1985 'TCG': lambda ds: (-0.1603 * ds.blue + -0.2819 * ds.green + -0.4934 * ds.red + 0.7940 * ds.nir + -0.0002 * ds.swir1 + -0.1446 * ds.swir2), # Tasseled Cap Brightness, Crist 1985 'TCB': lambda ds: (0.2043 * ds.blue + 0.4158 * ds.green + 0.5524 * ds.red + 0.5741 * ds.nir + 0.3124 * ds.swir1 + -0.2303 * ds.swir2), # Tasseled Cap Transformations with Sentinel-2 coefficients # after Nedkov 2017 using Gram-Schmidt orthogonalization (GSO) # Tasseled Cap Wetness, Nedkov 2017 'TCW_GSO': lambda ds: (0.0649 * ds.blue + 0.2802 * ds.green + 0.3072 * ds.red + -0.0807 * ds.nir + -0.4064 * ds.swir1 + -0.5602 * ds.swir2), # Tasseled Cap Greeness, Nedkov 2017 'TCG_GSO': lambda ds: (-0.0635 * ds.blue + -0.168 * ds.green + -0.348 * ds.red + 0.3895 * ds.nir + -0.4587 * ds.swir1 + -0.4064 * ds.swir2), # Tasseled Cap Brightness, Nedkov 2017 'TCB_GSO': lambda ds: (0.0822 * ds.blue + 0.136 * ds.green + 0.2611 * ds.red + 0.5741 * ds.nir + 0.3882 * ds.swir1 + 0.1366 * ds.swir2), # Clay Minerals Ratio, Drury 1987 'CMR': lambda ds: (ds.swir1 / ds.swir2), # Ferrous Minerals Ratio, Segal 1982 'FMR': lambda ds: (ds.swir1 / ds.nir), # Iron Oxide Ratio, Segal 1982 'IOR': lambda ds: (ds.red / ds.blue), } # If index supplied is not a list, convert to list. This allows us to # iterate through either multiple or single indices in the loop below indices = index if isinstance(index, list) else [index] # Calculate for each index in the list of indices supplied (indexes) for index in indices: # Select an index function from the dictionary index_func = index_dict.get(str(index)) # If no index is provided or if no function is returned due to an # invalid option being provided, raise an exception informing user to # choose from the list of valid options if index is None: raise ValueError(f"No remote sensing `index` was provided. Please " "refer to the function \ndocumentation for a full " "list of valid options for `index` (e.g. 'NDVI')") elif (index in ['WI', 'BAEI', 'AWEI_ns', 'AWEI_sh', 'EVI', 'LAI', 'SAVI', 'MSAVI'] and not normalise): warnings.warn(f"\nA coefficient-based index ('{index}') normally " "applied to surface reflectance values in the \n" "0.0-1.0 range was applied to values in the 0-10000 " "range. This can produce unexpected results; \nif " "required, resolve this by setting `normalise=True`") elif index_func is None: raise ValueError(f"The selected index '{index}' is not one of the " "valid remote sensing index options. \nPlease " "refer to the function documentation for a full " "list of valid options for `index`") # Rename bands to a consistent format if depending on what collection # is specified in `collection`. This allows the same index calculations # to be applied to all collections. If no collection was provided, # raise an exception. if collection is None: raise ValueError("'No `collection` was provided. Please specify " "either 'ga_ls_3', 'ga_s2_3' or 'ga_gm_3' " "to ensure the function calculates indices " "using the correct spectral bands") elif collection == 'ga_ls_3': # Dictionary mapping full data names to simpler 'red' alias names bandnames_dict = { 'nbart_nir': 'nir', 'nbart_red': 'red', 'nbart_green': 'green', 'nbart_blue': 'blue', 'nbart_swir_1': 'swir1', 'nbart_swir_2': 'swir2', 'nbar_red': 'red', 'nbar_green': 'green', 'nbar_blue': 'blue', 'nbar_nir': 'nir', 'nbar_swir_1': 'swir1', 'nbar_swir_2': 'swir2' } # Rename bands in dataset to use simple names (e.g. 'red') bands_to_rename = { a: b for a, b in bandnames_dict.items() if a in ds.variables } elif collection == 'ga_s2_3': # Dictionary mapping full data names to simpler 'red' alias names bandnames_dict = { 'nbart_red': 'red', 'nbart_green': 'green', 'nbart_blue': 'blue', 'nbart_nir_1': 'nir', 'nbart_red_edge_1': 'red_edge_1', 'nbart_red_edge_2': 'red_edge_2', 'nbart_swir_2': 'swir1', 'nbart_swir_3': 'swir2', 'nbar_red': 'red', 'nbar_green': 'green', 'nbar_blue': 'blue', 'nbar_nir_1': 'nir', 'nbar_red_edge_1': 'red_edge_1', 'nbar_red_edge_2': 'red_edge_2', 'nbar_swir_2': 'swir1', 'nbar_swir_3': 'swir2' } # Rename bands in dataset to use simple names (e.g. 'red') bands_to_rename = { a: b for a, b in bandnames_dict.items() if a in ds.variables } elif collection == 'ga_gm_3': # Pass an empty dict as no bands need renaming bands_to_rename = {} # Raise error if no valid collection name is provided: else: raise ValueError(f"'{collection}' is not a valid option for " "`collection`. Please specify either \n" "'ga_ls_3', 'ga_s2_3' or 'ga_gm_3'") # Apply index function try: # If normalised=True, divide data by 10,000 before applying func mult = 10000.0 if normalise else 1.0 index_array = index_func(ds.rename(bands_to_rename) / mult) except AttributeError: raise ValueError(f'Please verify that all bands required to ' f'compute {index} are present in `ds`. \n' f'These bands may vary depending on the `collection` ' f'(e.g. the Landsat `nbart_nir` band \n' f'is equivelent to `nbart_nir_1` for Sentinel 2)') # Add as a new variable in dataset output_band_name = custom_varname if custom_varname else index ds[output_band_name] = index_array # Once all indexes are calculated, drop input bands if inplace=False if drop and not inplace: ds = ds.drop(bands_to_drop) # If inplace == True, delete bands in-place instead of using drop if drop and inplace: for band_to_drop in bands_to_drop: del ds[band_to_drop] # Return input dataset with added water index variable return ds