Displaying satellite imagery on a web map 
Sign up to the DEA Sandbox to run this notebook interactively from a browser
Compatibility: Notebook currently compatible with both the
NCIandDEA SandboxenvironmentsProducts used: ga_s2bm_ard_3
Background
Leaflet is the leading open-source JavaScript library for mobile-friendly interactive maps. Functionality it provides is exposed to Python users by ipyleaflet and folium. This library enables interactive maps in the Jupyter notebook/JupyterLab environment.
Description
This notebook demonstrates how to plot an image and dataset footprints on a map.
Load some pixel data in
EPSG:3857projection, same as used by most web mapsDisplay image loaded from these datasets on a map
Display dataset footprints on a map along with image loaded from these datasets on the same map
Getting started
To run this analysis, run all the cells in the notebook, starting with the “Load packages” cell.
Load packages
[1]:
import os
import ipyleaflet
import numpy as np
from ipywidgets import widgets as w
from IPython.display import display
import datacube
import odc.ui
from odc.ui import with_ui_cbk
import sys
sys.path.insert(1, '../Tools/')
from dea_tools.maps import folium_map, folium_dual_map
from dea_tools.maps import ipyleaflet_map
Connect to the datacube
[2]:
dc = datacube.Datacube(app='Imagery_on_web_map')
Find datasets
In this example we are using the Sentinel-2B ARD product. We will be visualizing a portion of the swath taken by Sentinel-2B on 13-Jan-2018.
We want to display the captured imagery, but later on we will also need the dataset footprints. Rather than calling dc.load(..) directly with the time and spatial bounds we first use
dss = dc.find_datasets(..)
to obtain a list of datacube.Dataset objects overlapping with our query first.
[3]:
# Define product and red/green/blue bands in the given product
product = 'ga_s2bm_ard_3'
RGB = ('nbart_red', 'nbart_green', 'nbart_blue')
# Region and time of interest
query = dict(
    lat=(-30, -36),
    lon=(137, 139),
    time='2018-01-13',
)
dss = dc.find_datasets(product=product, **query)
print(f"Found {len(dss)} datasets")
Found 7 datasets
Load red/green/blue bands
Since we already have a list of datasets (dss) we do not need to repeat the query, instead we supply datasets to dc.load(.., datasets=dss, ..) along with other parameters used for loading data. Note that since we do not supply lat/lon bounds we will get all the imagery referenced by the datasets found earlier and the result will not be clipped to a lat/lon box in the query above.
We will load imagery at 200 m per pixel resolution (1/20 of the native) in the Pseudo-Mercator (EPSG:3857) projection, same as used by most webmaps.
[4]:
rgb = dc.load(
    product=product,             # dc.load always needs product supplied, this needs to be fixed in `dc.load` code
    datasets=dss,                # Datasets we found earlier
    measurements=RGB,            # Only load red,green,blue bands
    group_by='solar_day',        # Fuse all datasets captured on the same day into one raster plane
    output_crs='EPSG:3857',      # Default projection used by Leaflet and most webmaps
    resolution=(-200, 200),      # 200m pixels (1/20 of the native)
    resampling='bilinear',       # Use bilinear resampling when scaling down
    progress_cbk=with_ui_cbk())  # Display load progress
rgb
[4]:
<xarray.Dataset> Size: 14MB
Dimensions:      (time: 1, y: 2436, x: 989)
Coordinates:
  * time         (time) datetime64[ns] 8B 2018-01-13T00:57:00.462000
  * y            (y) float64 19kB -3.478e+06 -3.478e+06 ... -3.965e+06
  * x            (x) float64 8kB 1.514e+07 1.514e+07 ... 1.534e+07 1.534e+07
    spatial_ref  int32 4B 3857
Data variables:
    nbart_red    (time, y, x) int16 5MB -999 -999 -999 -999 ... -999 -999 -999
    nbart_green  (time, y, x) int16 5MB -999 -999 -999 -999 ... -999 -999 -999
    nbart_blue   (time, y, x) int16 5MB -999 -999 -999 -999 ... -999 -999 -999
Attributes:
    crs:           EPSG:3857
    grid_mapping:  spatial_refPlace data on a map
We can display this data on a folium map. We will use Datacube OWS styles to render the datasets into an image.
[5]:
# datacube OWS style configuration (see: https://datacube-ows.readthedocs.io/en/latest/styling_howto.html)
rgb_ows_cfg = {
    "components": {
        "red": {"nbart_red": 1.0},
        "green": {"nbart_green": 1.0},
        "blue": {"nbart_blue": 1.0},
    },
    "scale_range": (50, 3000),
}
folium_map(rgb, ows_style_config=rgb_ows_cfg, width=600, height=600)
[5]:
We can also use the ipyleaflet version of this, even though we are not adding any custom interactivity to it here.
[6]:
ipyleaflet_map(rgb, ows_style_config=rgb_ows_cfg, layout=w.Layout(width='600px', height='600px'), scroll_wheel_zoom=True)
[6]:
Compare true color image with false color image
We are going to compare this image with a false color version that maps the Sentinel-2 SWIR-2 band to red, NIR-1 band to green, and the usual green band to blue.
[7]:
FALSE_RGB = ['nbart_swir_2', 'nbart_nir_1', 'nbart_green']
false_rgb_ows_cfg = {
    "components": {
        "red": {"nbart_swir_2": 1.0},
        "green": {"nbart_nir_1": 1.0},
        "blue": {"nbart_green": 1.0},
    },
    "scale_range": (50, 3000),
}
false_rgb = dc.load(
    product=product,             # dc.load always needs product supplied, this needs to be fixed in `dc.load` code
    datasets=dss,                # Datasets we found earlier
    measurements=FALSE_RGB,            # Only load red,green,blue bands
    group_by='solar_day',        # Fuse all datasets captured on the same day into one raster plane
    output_crs='EPSG:3857',      # Default projection used by Leaflet and most webmaps
    resolution=(-200, 200),      # 200m pixels (1/20 of the native)
    resampling='bilinear',       # Use bilinear resampling when scaling down
    progress_cbk=with_ui_cbk())  # Display load progress
false_rgb
[7]:
<xarray.Dataset> Size: 14MB
Dimensions:       (time: 1, y: 2436, x: 989)
Coordinates:
  * time          (time) datetime64[ns] 8B 2018-01-13T00:57:00.462000
  * y             (y) float64 19kB -3.478e+06 -3.478e+06 ... -3.965e+06
  * x             (x) float64 8kB 1.514e+07 1.514e+07 ... 1.534e+07 1.534e+07
    spatial_ref   int32 4B 3857
Data variables:
    nbart_swir_2  (time, y, x) int16 5MB -999 -999 -999 -999 ... -999 -999 -999
    nbart_nir_1   (time, y, x) int16 5MB -999 -999 -999 -999 ... -999 -999 -999
    nbart_green   (time, y, x) int16 5MB -999 -999 -999 -999 ... -999 -999 -999
Attributes:
    crs:           EPSG:3857
    grid_mapping:  spatial_refThe following gives us two maps showing the two datasets side-by-side that share the view controls for easy comparison.
[8]:
folium_dual_map(rgb, false_rgb, left_ows_style=rgb_ows_cfg, right_ows_style=false_rgb_ows_cfg, scroll_wheel_zoom=False)
[8]:
Create Leaflet Map with dataset footprints
This is a more advanced example with some interactivity (opacity control) supported by the ipyleaflet package.
First we convert list of dataset objects into a GeoJSON of dataset footprints, while also computing bounding box. We will use the bounding box to set initial viewport of the map.
[9]:
polygons, bbox = odc.ui.dss_to_geojson(dss, bbox=True)
Create ipyleaflet.Map with full-screen and layer visibility controls. Set initial view to be centered around dataset footprints. We will not be displaying the map just yet.
[10]:
zoom = odc.ui.zoom_from_bbox(bbox)
center = (bbox.bottom + bbox.top) * 0.5, (bbox.right + bbox.left) * 0.5
m = ipyleaflet.Map(
    center=center,
    zoom=zoom,
    scroll_wheel_zoom=True,  # Allow zoom with the mouse scroll wheel
    layout=w.Layout(
        width='600px',   # Set Width of the map to 600 pixels, examples: "100%", "5em", "300px"
        height='600px',  # Set height of the map
    ))
# Add full-screen and layer visibility controls
m.add_control(ipyleaflet.FullScreenControl())
m.add_control(ipyleaflet.LayersControl())
Now we add footprints to the map.
[11]:
m.add_layer(ipyleaflet.GeoJSON(
    data={'type': 'FeatureCollection',
          'features': polygons},
    style={
        'opacity': 0.3,      # Footprint outline opacity
        'fillOpacity': 0     # Do not fill
    },
    hover_style={'color': 'tomato'},  # Style when hovering over footprint
    name="Footprints"                 # Name of the Layer, used by Layer Control widget
))
Create Leaflet image layer
Under the hood mk_image_layer will:
Convert 16-bit
rgbxarray to an 8-bit RGBA imageEncode RGBA image as PNG data
odc.ui.to_rgbaRender PNG data to “data uri”
Compute image bounds
Construct
ipyleaflet.ImageLayerwith uri from step 3 and bounds from step 4
JPEG compression can also be used (e.g fmt="jpeg"), useful for larger images to reduce notebook size in bytes (use quality=40 to reduce size further), downside is no opacity support unlike PNG.
Satellite imagery is often 12-bit and higher, but web images are usually 8-bit, hence we need to reduce bit-depth of the input imagery such that there are only 256 levels per color channel. This is where clamp parameter comes in. In this case we use clamp=3000. Input values of 3000 and higher will map to value 255 (largest possible 8-bit unsigned value), 0 will map to 0 and every other value in between will scale linearly.
[12]:
img_layer = odc.ui.mk_image_overlay(
    rgb,
    clamp=3000,  # 3000 -- brightest pixel level
    fmt='png')   # "jpeg" is another option
# Add image layer to a map we created earlier
m.add_layer(img_layer)
Add opacity control
Add Vertical Slider to the map
Dragging slider down lowers opacity of the image layer
Use of
jslinkfromipywidgetsensures that this interactive behaviour will work even on a pre-rendered notebook (i.e. on nbviewer)
[13]:
slider = w.FloatSlider(min=0, max=1, value=1,        # Opacity is valid in [0,1] range
                       orientation='vertical',       # Vertical slider is what we want
                       readout=False,                # No need to show exact value
                       layout=w.Layout(width='2em')) # Fine tune display layout: make it thinner
# Connect slider value to opacity property of the Image Layer
w.jslink((slider, 'value'),
         (img_layer, 'opacity') )
m.add_control(ipyleaflet.WidgetControl(widget=slider))
Finally display the map
[14]:
display(m)
Sharing notebooks online
Unlike notebooks with matplotlib figures, saving a notebook after running it is not enough to have interactive maps displayed when sharing rendered notebooks online. You also need to make sure that “Widget State” is saved. In JupyterLab make sure that Save Widget State Automatically setting is enabled. You can find it under Settings menu.
Additional information
License: The code in this notebook is licensed under the Apache License, Version 2.0. Digital Earth Australia data is licensed under the Creative Commons by Attribution 4.0 license.
Contact: If you need assistance, please post a question on the Open Data Cube Discord chat or on the GIS Stack Exchange using the open-data-cube tag (you can view previously asked questions here). If you would like to report an issue with this notebook, you can file one on
GitHub.
Last modified: September 2021
Compatible datacube version:
[15]:
print(datacube.__version__)
1.8.19
Tags
Tags: NCI compatible, sandbox compatible, sentinel 2, widgets, ipyleaflet, interactive