## dea_spatialtools.py
"""
Tools for spatially manipulating Digital Earth Australia data.
License: The code in this notebook is licensed under the Apache License,
Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0). Digital Earth
Australia data is licensed under the Creative Commons by Attribution 4.0
license (https://creativecommons.org/licenses/by/4.0/).
Contact: If you need assistance, please post a question on the Open Data
Cube Discord chat (https://discord.com/invite/4hhBQVas5U) or on the GIS Stack
Exchange (https://gis.stackexchange.com/questions/ask?tags=open-data-cube)
using the `open-data-cube` tag (you can view previously asked questions
here: https://gis.stackexchange.com/questions/tagged/open-data-cube).
If you would like to report an issue with this script, file one on
GitHub: https://github.com/GeoscienceAustralia/dea-notebooks/issues/new
Last modified: July 2024
"""
# Import required packages
import dask
import fiona
import warnings
import collections
import odc.geo.xr
import numpy as np
import pandas as pd
import xarray as xr
import geopandas as gpd
import rasterio.features
import scipy.interpolate
import multiprocessing as mp
from scipy import ndimage as nd
from scipy.spatial import cKDTree as KDTree
from skimage.measure import label
from rasterstats import zonal_stats
from skimage.measure import find_contours
from geopy.geocoders import Nominatim
from geopy.exc import GeocoderUnavailable, GeocoderServiceError
from shapely.geometry import (
MultiPoint,
MultiLineString,
LineString,
Polygon,
MultiPolygon,
Point,
shape,
mapping,
)
from datacube.utils.cog import write_cog
from odc.geo.geom import Geometry
from odc.geo.crs import CRS
def _geom_to_multipoint(geom):
"""
Convert a LineString, MultiLineString, Polygon, MultiPolygon or
Point to a MultiPoint geometry.
"""
if isinstance(geom, LineString):
points = list(geom.coords)
elif isinstance(geom, MultiLineString):
points = [point for line in geom.geoms for point in line.coords]
elif isinstance(geom, Polygon):
points = list(geom.boundary.coords)
elif isinstance(geom, MultiPolygon):
points = [point for poly in geom.boundary.geoms for point in poly.coords]
elif isinstance(geom, Point):
points = [geom]
elif isinstance(geom, MultiPoint):
points = [point for point in geom.geoms]
return MultiPoint(points)
[docs]
def points_on_line(gdf, index, distance=30):
"""
Generates evenly-spaced point features along a specific line feature
in a `geopandas.GeoDataFrame`.
Parameters:
-----------
gdf : geopandas.GeoDataFrame
A `geopandas.GeoDataFrame` containing line features with an
index and CRS.
index : string or int
An value giving the index of the line to generate points along
distance : integer or float, optional
A number giving the interval at which to generate points along
the line feature. Defaults to 30, which will generate a point
at every 30 metres along the line.
Returns:
--------
points_gdf : geopandas.GeoDataFrame
A `geopandas.GeoDataFrame` containing point features at every
`distance` along the selected line.
"""
# Select individual line to generate points along
line_feature = gdf.loc[[index]].geometry
# If multiple features are returned, take unary union
if line_feature.shape[0] > 0:
line_feature = line_feature.unary_union
else:
line_feature = line_feature.iloc[0]
# Generate points along line and convert to geopandas.GeoDataFrame
points_line = [
line_feature.interpolate(i)
for i in range(0, int(line_feature.length), distance)
]
points_gdf = gpd.GeoDataFrame(geometry=points_line, crs=gdf.crs)
return points_gdf
[docs]
def add_geobox(ds, crs=None):
"""
Ensure that an xarray DataArray has a GeoBox and .odc.* accessor
using `odc.geo`.
If `ds` is missing a Coordinate Reference System (CRS), this can be
supplied using the `crs` param.
Parameters
----------
ds : xarray.Dataset or xarray.DataArray
Input xarray object that needs to be checked for spatial
information.
crs : str, optional
Coordinate Reference System (CRS) information for the input `ds`
array. If `ds` already has a CRS, then `crs` is not required.
Default is None.
Returns
-------
xarray.Dataset or xarray.DataArray
The input xarray object with added `.odc.x` attributes to access
spatial information.
"""
# Import the odc-geo package to add `.odc.x` attributes
# to our input xarray object
import odc.geo.xr
# If a CRS is not found, use custom provided CRS
if ds.odc.crs is None and crs is not None:
ds = ds.odc.assign_crs(crs)
elif ds.odc.crs is None and crs is None:
raise ValueError(
"Unable to determine `ds`'s coordinate "
"reference system (CRS). Please provide a "
"CRS using the `crs` parameter "
"(e.g. `crs='EPSG:3577'`)."
)
return ds
[docs]
def xr_vectorize(
da,
attribute_col=None,
crs=None,
dtype="float32",
output_path=None,
verbose=True,
**rasterio_kwargs,
):
"""
Vectorises a raster ``xarray.DataArray`` into a vector
``geopandas.GeoDataFrame``.
Parameters
----------
da : xarray.DataArray
The input ``xarray.DataArray`` data to vectorise.
attribute_col : str, optional
Name of the attribute column in the resulting
``geopandas.GeoDataFrame``. Values from ``da`` converted
to polygons will be assigned to this column. If None,
the column name will default to 'attribute'.
crs : str or CRS object, optional
If ``da``'s coordinate reference system (CRS) cannot be
determined, provide a CRS using this parameter.
(e.g. 'EPSG:3577').
dtype : str, optional
Data type of must be one of int16, int32, uint8, uint16,
or float32
output_path : string, optional
Provide an optional string file path to export the vectorised
data to file. Supports any vector file formats supported by
``geopandas.GeoDataFrame.to_file()``.
verbose : bool, optional
Print debugging messages. Default True.
**rasterio_kwargs :
A set of keyword arguments to ``rasterio.features.shapes``.
Can include `mask` and `connectivity`.
Returns
-------
gdf : geopandas.GeoDataFrame
"""
# Add GeoBox and odc.* accessor to array using `odc-geo`
da = add_geobox(da, crs)
# Run the vectorizing function
vectors = rasterio.features.shapes(
source=da.data.astype(dtype), transform=da.odc.transform, **rasterio_kwargs
)
# Convert the generator into a list
vectors = list(vectors)
# Extract the polygon coordinates and values from the list
polygons = [polygon for polygon, value in vectors]
values = [value for polygon, value in vectors]
# Convert polygon coordinates into polygon shapes
polygons = [shape(polygon) for polygon in polygons]
# Create a geopandas dataframe populated with the polygon shapes
attribute_name = attribute_col if attribute_col is not None else "attribute"
gdf = gpd.GeoDataFrame(
data={attribute_name: values}, geometry=polygons, crs=da.odc.crs
)
# If a file path is supplied, export to file
if output_path is not None:
if verbose:
print(f"Exporting vector data to {output_path}")
gdf.to_file(output_path)
return gdf
[docs]
def xr_rasterize(
gdf,
da,
attribute_col=None,
crs=None,
name=None,
output_path=None,
verbose=True,
**rasterio_kwargs,
):
"""
Rasterizes a vector ``geopandas.GeoDataFrame`` into a
raster ``xarray.DataArray``.
Parameters
----------
gdf : geopandas.GeoDataFrame
A ``geopandas.GeoDataFrame`` object containing the vector
data you want to rasterise.
da : xarray.DataArray or xarray.Dataset
The shape, coordinates, dimensions, and transform of this object
are used to define the array that ``gdf`` is rasterized into.
It effectively provides a spatial template.
attribute_col : string, optional
Name of the attribute column in ``gdf`` containing values for
each vector feature that will be rasterized. If None, the
output will be a boolean array of 1's and 0's.
crs : str or CRS object, optional
If ``da``'s coordinate reference system (CRS) cannot be
determined, provide a CRS using this parameter.
(e.g. 'EPSG:3577').
name : str, optional
An optional name used for the output ``xarray.DataArray`.
output_path : string, optional
Provide an optional string file path to export the rasterized
data as a GeoTIFF file.
verbose : bool, optional
Print debugging messages. Default True.
**rasterio_kwargs :
A set of keyword arguments to ``rasterio.features.rasterize``.
Can include: 'all_touched', 'merge_alg', 'dtype'.
Returns
-------
da_rasterized : xarray.DataArray
The rasterized vector data.
"""
# Add GeoBox and odc.* accessor to array using `odc-geo`
da = add_geobox(da, crs)
# Reproject vector data to raster's CRS
gdf_reproj = gdf.to_crs(crs=da.odc.crs)
# If an attribute column is specified, rasterise using vector
# attribute values. Otherwise, rasterise into a boolean array
if attribute_col is not None:
# Use the geometry and attributes from `gdf` to create an iterable
shapes = zip(gdf_reproj.geometry, gdf_reproj[attribute_col])
else:
# Use geometry directly (will produce a boolean numpy array)
shapes = gdf_reproj.geometry
# Rasterise shapes into a numpy array
im = rasterio.features.rasterize(
shapes=shapes,
out_shape=da.odc.geobox.shape,
transform=da.odc.geobox.transform,
**rasterio_kwargs,
)
# Convert numpy array to a full xarray.DataArray
# and set array name if supplied
da_rasterized = odc.geo.xr.wrap_xr(im=im, gbox=da.odc.geobox)
da_rasterized = da_rasterized.rename(name)
# If a file path is supplied, export to file
if output_path is not None:
if verbose:
print(f"Exporting raster data to {output_path}")
write_cog(da_rasterized, output_path, overwrite=True)
return da_rasterized
[docs]
def subpixel_contours(
da,
z_values=[0.0],
crs=None,
attribute_df=None,
output_path=None,
min_vertices=2,
dim="time",
time_format="%Y-%m-%d",
errors="ignore",
verbose=True,
):
"""
Uses `skimage.measure.find_contours` to extract multiple z-value
contour lines from a two-dimensional array (e.g. multiple elevations
from a single DEM), or one z-value for each array along a specified
dimension of a multi-dimensional array (e.g. to map waterlines
across time by extracting a 0 NDWI contour from each individual
timestep in an xarray timeseries).
Contours are returned as a geopandas.GeoDataFrame with one row per
z-value or one row per array along a specified dimension. The
`attribute_df` parameter can be used to pass custom attributes
to the output contour features.
Last modified: May 2023
Parameters
----------
da : xarray DataArray
A two-dimensional or multi-dimensional array from which
contours are extracted. If a two-dimensional array is provided,
the analysis will run in 'single array, multiple z-values' mode
which allows you to specify multiple `z_values` to be extracted.
If a multi-dimensional array is provided, the analysis will run
in 'single z-value, multiple arrays' mode allowing you to
extract contours for each array along the dimension specified
by the `dim` parameter.
z_values : int, float or list of ints, floats
An individual z-value or list of multiple z-values to extract
from the array. If operating in 'single z-value, multiple
arrays' mode specify only a single z-value.
crs : string or CRS object, optional
If ``da``'s coordinate reference system (CRS) cannot be
determined, provide a CRS using this parameter.
(e.g. 'EPSG:3577').
output_path : string, optional
The path and filename for the output shapefile.
attribute_df : pandas.Dataframe, optional
A pandas.Dataframe containing attributes to pass to the output
contour features. The dataframe must contain either the same
number of rows as supplied `z_values` (in 'multiple z-value,
single array' mode), or the same number of rows as the number
of arrays along the `dim` dimension ('single z-value, multiple
arrays mode').
min_vertices : int, optional
The minimum number of vertices required for a contour to be
extracted. The default (and minimum) value is 2, which is the
smallest number required to produce a contour line (i.e. a start
and end point). Higher values remove smaller contours,
potentially removing noise from the output dataset.
dim : string, optional
The name of the dimension along which to extract contours when
operating in 'single z-value, multiple arrays' mode. The default
is 'time', which extracts contours for each array along the time
dimension.
time_format : string, optional
The format used to convert `numpy.datetime64` values to strings
if applied to data with a "time" dimension. Defaults to
"%Y-%m-%d".
errors : string, optional
If 'raise', then any failed contours will raise an exception.
If 'ignore' (the default), a list of failed contours will be
printed. If no contours are returned, an exception will always
be raised.
verbose : bool, optional
Print debugging messages. Default is True.
Returns
-------
output_gdf : geopandas geodataframe
A geopandas geodataframe object with one feature per z-value
('single array, multiple z-values' mode), or one row per array
along the dimension specified by the `dim` parameter ('single
z-value, multiple arrays' mode). If `attribute_df` was
provided, these values will be included in the shapefile's
attribute table.
"""
def _contours_to_multiline(da_i, z_value, min_vertices=2):
"""
Helper function to apply marching squares contour extraction
to an array and return a data as a shapely MultiLineString.
The `min_vertices` parameter allows you to drop small contours
with less than X vertices.
"""
# Extracts contours from array, and converts each discrete
# contour into a Shapely LineString feature. If the function
# returns a KeyError, this may be due to an unresolved issue in
# scikit-image: https://github.com/scikit-image/scikit-image/issues/4830
# A temporary workaround is to peturb the z-value by a tiny
# amount (1e-12) before using it to extract the contour.
try:
line_features = [
LineString(i[:, [1, 0]])
for i in find_contours(da_i.data, z_value)
if i.shape[0] >= min_vertices
]
except KeyError:
line_features = [
LineString(i[:, [1, 0]])
for i in find_contours(da_i.data, z_value + 1e-12)
if i.shape[0] >= min_vertices
]
# Output resulting lines into a single combined MultiLineString
return MultiLineString(line_features)
def _time_format(i, time_format):
"""
Converts numpy.datetime64 into formatted strings;
otherwise returns data as-is.
"""
if isinstance(i, np.datetime64):
ts = pd.to_datetime(str(i))
i = ts.strftime(time_format)
return i
# Verify input data is a xr.DataArray
if not isinstance(da, xr.DataArray):
raise ValueError(
"The input `da` is not an xarray.DataArray. "
"If you supplied an xarray.Dataset, pass in one "
"of its data variables using the syntax "
"`da=ds.<variable name>`."
)
# Add GeoBox and odc.* accessor to array using `odc-geo`
da = add_geobox(da, crs)
# If z_values is supplied is not a list, convert to list:
z_values = (
z_values
if (isinstance(z_values, list) or isinstance(z_values, np.ndarray))
else [z_values]
)
# If dask collection, load into memory
if dask.is_dask_collection(da):
if verbose:
print(f"Loading data into memory using Dask")
da = da.compute()
# Test number of dimensions in supplied data array
if len(da.shape) == 2:
if verbose:
print(f"Operating in multiple z-value, single array mode")
dim = "z_value"
contour_arrays = {
_time_format(i, time_format): _contours_to_multiline(da, i, min_vertices)
for i in z_values
}
else:
# Test if only a single z-value is given when operating in
# single z-value, multiple arrays mode
if verbose:
print(f"Operating in single z-value, multiple arrays mode")
if len(z_values) > 1:
raise ValueError(
"Please provide a single z-value when operating "
"in single z-value, multiple arrays mode"
)
contour_arrays = {
_time_format(i, time_format): _contours_to_multiline(
da_i, z_values[0], min_vertices
)
for i, da_i in da.groupby(dim)
}
# If attributes are provided, add the contour keys to that dataframe
if attribute_df is not None:
try:
attribute_df.insert(0, dim, contour_arrays.keys())
# If this fails, it is due to the applied attribute table not
# matching the structure of the loaded data
except ValueError:
if len(da.shape) == 2:
raise ValueError(
f"The provided `attribute_df` contains a different "
f"number of rows ({len(attribute_df.index)}) "
f"than the number of supplied `z_values` "
f"({len(z_values)})."
)
else:
raise ValueError(
f"The provided `attribute_df` contains a different "
f"number of rows ({len(attribute_df.index)}) "
f"than the number of arrays along the '{dim}' "
f"dimension ({len(da[dim])})."
)
# Otherwise, use the contour keys as the only main attributes
else:
attribute_df = list(contour_arrays.keys())
# Convert output contours to a geopandas.GeoDataFrame
contours_gdf = gpd.GeoDataFrame(
data=attribute_df, geometry=list(contour_arrays.values()), crs=da.odc.crs
)
# Define affine and use to convert array coords to geographic coords.
# We need to add 0.5 x pixel size to the x and y to obtain the centre
# point of our pixels, rather than the top-left corner
affine = da.odc.geobox.transform
shapely_affine = [
affine.a,
affine.b,
affine.d,
affine.e,
affine.xoff + affine.a / 2.0,
affine.yoff + affine.e / 2.0,
]
contours_gdf["geometry"] = contours_gdf.affine_transform(shapely_affine)
# Rename the data column to match the dimension
contours_gdf = contours_gdf.rename({0: dim}, axis=1)
# Drop empty timesteps
empty_contours = contours_gdf.geometry.is_empty
failed = ", ".join(map(str, contours_gdf[empty_contours][dim].to_list()))
contours_gdf = contours_gdf[~empty_contours]
# Raise exception if no data is returned, or if any contours fail
# when `errors='raise'. Otherwise, print failed contours
if empty_contours.all() and errors == "raise":
raise ValueError(
"Failed to generate any valid contours; verify that "
"values passed to `z_values` are valid and present "
"in `da`"
)
elif empty_contours.all() and errors == "ignore":
if verbose:
print(
"Failed to generate any valid contours; verify that "
"values passed to `z_values` are valid and present "
"in `da`"
)
elif empty_contours.any() and errors == "raise":
raise Exception(f"Failed to generate contours: {failed}")
elif empty_contours.any() and errors == "ignore":
if verbose:
print(f"Failed to generate contours: {failed}")
# If asked to write out file, test if GeoJSON or ESRI Shapefile. If
# GeoJSON, convert to EPSG:4326 before exporting.
if output_path and output_path.endswith(".geojson"):
if verbose:
print(f"Writing contours to {output_path}")
contours_gdf.to_crs("EPSG:4326").to_file(filename=output_path)
if output_path and output_path.endswith(".shp"):
if verbose:
print(f"Writing contours to {output_path}")
contours_gdf.to_file(filename=output_path)
return contours_gdf
[docs]
def idw(
input_z,
input_x,
input_y,
output_x,
output_y,
p=1,
k=10,
max_dist=None,
k_min=1,
epsilon=1e-12,
):
"""
Perform Inverse Distance Weighting (IDW) interpolation.
This function performs fast IDW interpolation by creating a KDTree
from the input coordinates then uses it to find the `k` nearest
neighbors for each output point. Weights are calculated based on the
inverse distance to each neighbor, with weights descreasing with
increasing distance.
Code inspired by: https://github.com/DahnJ/REM-xarray
Parameters
----------
input_z : array-like
Array of values at the input points. This can be either a
1-dimensional array, or a 2-dimensional array where each column
(axis=1) represents a different set of values to be interpolated.
input_x : array-like
Array of x-coordinates of the input points.
input_y : array-like
Array of y-coordinates of the input points.
output_x : array-like
Array of x-coordinates where the interpolation is to be computed.
output_y : array-like
Array of y-coordinates where the interpolation is to be computed.
p : int or float, optional
Power function parameter defining how rapidly weightings should
decrease as distance increases. Higher values of `p` will cause
weights for distant points to decrease rapidly, resulting in
nearby points having more influence on predictions. Defaults to 1.
k : int, optional
Number of nearest neighbors to use for interpolation. `k=1` is
equivalent to "nearest" neighbour interpolation. Defaults to 10.
max_dist : int or float, optional
Restrict neighbouring points to less than this distance.
By default, no distance limit is applied.
k_min : int, optional
If `max_dist` is provided, some points may end up with less than
`k` nearest neighbours, potentially producing less reliable
interpolations. Set `k_min` to set any points with less than
`k_min` neighbours to NaN. Defaults to 1.
epsilon : float, optional
Small value added to distances to prevent division by zero
errors in the case that output coordinates are identical to
input coordinates. Defaults to 1e-12.
Returns
-------
interp_values : numpy.ndarray
Interpolated values at the output coordinates. If `input_z` is
1-dimensional, `interp_values` will also be 1-dimensional. If
`input_z` is 2-dimensional, `interp_values` will have the same
number of rows as `input_z`, with each column (axis=1)
representing interpolated values for one set of input data.
Examples
--------
>>> input_z = [1, 2, 3, 4, 5]
>>> input_x = [0, 1, 2, 3, 4]
>>> input_y = [0, 1, 2, 3, 4]
>>> output_x = [0.5, 1.5, 2.5]
>>> output_y = [0.5, 1.5, 2.5]
>>> idw(input_z, input_x, input_y, output_x, output_y, k=2)
array([1.5, 2.5, 3.5])
"""
# Convert to numpy arrays
input_x = np.atleast_1d(input_x)
input_y = np.atleast_1d(input_y)
input_z = np.atleast_1d(input_z)
output_x = np.atleast_1d(output_x)
output_y = np.atleast_1d(output_y)
# Verify input and outputs have matching lengths
if not (input_z.shape[0] == len(input_x) == len(input_y)):
raise ValueError(
f"All of `input_z`, `input_x` and `input_y` must be the same length."
)
if not (len(output_x) == len(output_y)):
raise ValueError(f"Both `output_x` and `output_y` must be the same length.")
# Verify k is smaller than total number of points, and non-zero
if k > input_z.shape[0]:
raise ValueError(
f"The requested number of nearest neighbours (`k={k}`) "
f"is smaller than the total number of points ({input_z.shape[0]})."
)
elif k == 0:
raise ValueError(
f"Interpolation based on `k=0` nearest neighbours is not valid."
)
# Create KDTree to efficiently find nearest neighbours
points_xy = np.column_stack((input_y, input_x))
tree = KDTree(points_xy)
# Determine nearest neighbours and distances to each
grid_stacked = np.column_stack((output_y, output_x))
distances, indices = tree.query(grid_stacked, k=k, workers=-1)
# If k == 1, add an additional axis for consistency
if k == 1:
distances = distances[..., np.newaxis]
indices = indices[..., np.newaxis]
# Add small epsilon to distances to prevent division by zero errors
# if output coordinates are the same as input coordinates
distances = np.maximum(distances, epsilon)
# Set distances above max to NaN if specified
if max_dist is not None:
distances[distances > max_dist] = np.nan
# Calculate weights based on distance to k nearest neighbours.
weights = 1 / np.power(distances, p)
weights = weights / np.nansum(weights, axis=1).reshape(-1, 1)
# 1D case: Compute weighted sum of input_z values for each output point
if input_z.ndim == 1:
interp_values = np.nansum(weights * input_z[indices], axis=1)
# 2D case: Compute weighted sum for each set of input_z values
# weights[..., np.newaxis] adds a dimension for broadcasting
else:
interp_values = np.nansum(
weights[..., np.newaxis] * input_z[indices],
axis=1,
)
# Set any points with less than `k_min` valid weights to NaN
interp_values[np.isfinite(weights).sum(axis=1) < k_min] = np.nan
return interp_values
[docs]
def xr_interpolate(
ds,
gdf,
columns=None,
method="linear",
factor=1,
k=10,
crs=None,
**kwargs,
):
"""
This function takes a geopandas.GeoDataFrame points dataset
containing one or more numeric columns, and interpolates these points
into the spatial extent of an existing xarray dataset. This can be
useful for producing smooth raster surfaces from point data to
compare directly against satellite data.
Supported interpolation methods include "linear", "nearest" and
"cubic" (using `scipy.interpolate.griddata`), "rbf" (using
`scipy.interpolate.Rbf`), and "idw" (Inverse Distance Weighted
interpolation using `k` nearest neighbours). Each numeric column
will be returned as a variable in the output xarray.Dataset.
Last modified: March 2024
Parameters
----------
ds : xarray.DataArray or xarray.Dataset
A two-dimensional or multi-dimensional array whose spatial extent
will be used to interpolate point data into.
gdf : geopandas.GeoDataFrame
A dataset of spatial points including at least one numeric column.
By default all numeric columns in this dataset will be spatially
interpolated into the extent of `ds`; specific columns can be
selected using `columns`. An warning will be raised if the points
in `gdf` do not overlap with the extent of `ds`.
columns : list, optional
An optional list of specific columns in gdf` to run the
interpolation on. These must all be of numeric data types.
method : string, optional
The method used to interpolate between point values. This string
is either passed to `scipy.interpolate.griddata` (for "linear",
"nearest" and "cubic" methods), or used to specify Radial Basis
Function interpolation using `scipy.interpolate.Rbf` ("rbf"), or
Inverse Distance Weighted interpolation ("idw").
Defaults to 'linear'.
factor : int, optional
An optional integer that can be used to subsample the spatial
interpolation extent to obtain faster interpolation times, before
up-sampling the array back to the original dimensions of the
data as a final step. For example, `factor=10` will interpolate
data into a grid that has one tenth of the resolution of `ds`.
This will be significantly faster than interpolating at full
resolution, but will potentially produce less accurate results.
k : int, optional
The number of nearest neighbours used to calculate weightings if
`method` is "idw". Defaults to 10; setting `k=1` is equivalent to
"nearest" interpolation.
crs : string or CRS object, optional
If `ds`'s coordinate reference system (CRS) cannot be determined,
provide a CRS using this parameter (e.g. 'EPSG:3577').
**kwargs :
Optional keyword arguments to pass to either
`scipy.interpolate.griddata` (if `method` is "linear", "nearest"
or "cubic"), `scipy.interpolate.Rbf` (is `method` is "rbf"),
or `idw` (if method is "idw").
Returns
-------
interpolated_ds : xarray.Dataset
An xarray.Dataset containing interpolated data with the same X
and Y coordinate pixel grid as `ds`, and a data variable for
each numeric column in `gdf`.
"""
# Add GeoBox and odc.* accessor to array using `odc-geo`, and identify
# spatial dimension names from `ds`
ds = add_geobox(ds, crs)
y_dim, x_dim = ds.odc.spatial_dims
# Reproject to match input `ds`, and raise warning if there are no overlaps
gdf = gdf.to_crs(ds.odc.crs)
if not gdf.dissolve().intersects(ds.odc.geobox.extent.geom).item():
warnings.warn(
"The supplied `gdf` does not overlap spatially with `ds`.", stacklevel=2
)
# Select subset of numeric columns (non-numeric are not supported)
numeric_gdf = gdf.select_dtypes("number")
# Subset further to supplied `columns`
try:
numeric_gdf = numeric_gdf if columns is None else numeric_gdf[columns]
except KeyError:
raise ValueError(
"One or more of the provided columns either does "
"not exist in `gdf`, or is a non-numeric column. "
"Only numeric columns are supported by `xr_interpolate`."
)
# Raise a warning if no numeric columns exist after selection
if len(numeric_gdf.columns) == 0:
raise ValueError(
"The provided `gdf` contains no numeric columns to interpolate."
)
# Identify spatial coordinates, and stack to use in interpolation
x_coords = gdf.geometry.x
y_coords = gdf.geometry.y
points_xy = np.column_stack((y_coords, x_coords))
# Identify x and y coordinates from `ds` to interpolate into.
# If `factor` is greater than 1, the coordinates will be subsampled
# for faster run-times. If the last x or y value in the subsampled
# grid aren't the same as the last x or y values in the original
# full resolution grid, add the final full resolution grid value to
# ensure data is interpolated up to the very edge of the array
if ds[x_dim][::factor][-1].item() == ds[x_dim][-1].item():
x_grid_coords = ds[x_dim][::factor].values
else:
x_grid_coords = ds[x_dim][::factor].values.tolist() + [ds[x_dim][-1].item()]
if ds[y_dim][::factor][-1].item() == ds[y_dim][-1].item():
y_grid_coords = ds[y_dim][::factor].values
else:
y_grid_coords = ds[y_dim][::factor].values.tolist() + [ds[y_dim][-1].item()]
# Create grid to interpolate into
grid_x, grid_y = np.meshgrid(x_grid_coords, y_grid_coords)
# Output dict
correlation_outputs = {}
# Run interpolation on values from each numeric column,
for col, z_values in numeric_gdf.items():
# Apply scipy.interpolate.griddata interpolation methods
if method in ("linear", "nearest", "cubic"):
# Interpolate x, y and z values
interp_2d = scipy.interpolate.griddata(
points=points_xy,
values=z_values,
xi=(grid_y, grid_x),
method=method,
**kwargs,
)
# Apply Radial Basis Function interpolation
elif method == "rbf":
# Interpolate x, y and z values
rbf = scipy.interpolate.Rbf(y_coords, x_coords, z_values, **kwargs)
interp_2d = rbf(grid_y, grid_x)
# Apply Inverse Distance Weighted interpolation
elif method == "idw":
# Interpolate x, y and z values
interp_1d = idw(
input_z=z_values,
input_x=x_coords,
input_y=y_coords,
output_x=grid_x.flatten(),
output_y=grid_y.flatten(),
k=k,
**kwargs,
)
# Reshape to 2D
interp_2d = interp_1d.reshape(len(y_grid_coords), len(x_grid_coords))
# Add 2D interpolated array to output dictionary
correlation_outputs[col] = ((y_dim, x_dim), interp_2d)
# Combine all outputs into a single xr.Dataset
interpolated_ds = xr.Dataset(
correlation_outputs, coords={y_dim: y_grid_coords, x_dim: x_grid_coords}
)
# If factor is greater than 1, resample the interpolated array to
# match the input `ds` array
if factor > 1:
interpolated_ds = interpolated_ds.interp_like(ds)
# Ensure CRS is correctly set on output
interpolated_ds = interpolated_ds.odc.assign_crs(crs=ds.odc.crs)
return interpolated_ds
[docs]
def interpolate_2d(
ds, x_coords, y_coords, z_coords, method="linear", factor=1, verbose=False, **kwargs
):
"""
This function takes points with X, Y and Z coordinates, and
interpolates Z-values across the extent of an existing xarray
dataset. This can be useful for producing smooth surfaces from point
data that can be compared directly against satellite data derived
from an OpenDataCube query.
Supported interpolation methods include 'linear', 'nearest' and
'cubic (using `scipy.interpolate.griddata`), and 'rbf' (using
`scipy.interpolate.Rbf`).
NOTE: This function is deprecated and will be retired in a future
release. Please use `xr_interpolate` instead."
Last modified: February 2020
Parameters
----------
ds : xarray DataArray or Dataset
A two-dimensional or multi-dimensional array from which x and y
dimensions will be copied and used for the area in which to
interpolate point data.
x_coords, y_coords : numpy array
Arrays containing X and Y coordinates for all points (e.g.
longitudes and latitudes).
z_coords : numpy array
An array containing Z coordinates for all points (e.g.
elevations). These are the values you wish to interpolate
between.
method : string, optional
The method used to interpolate between point values. This string
is either passed to `scipy.interpolate.griddata` (for 'linear',
'nearest' and 'cubic' methods), or used to specify Radial Basis
Function interpolation using `scipy.interpolate.Rbf` ('rbf').
Defaults to 'linear'.
factor : int, optional
An optional integer that can be used to subsample the spatial
interpolation extent to obtain faster interpolation times, then
up-sample this array back to the original dimensions of the
data as a final step. For example, setting `factor=10` will
interpolate data into a grid that has one tenth of the
resolution of `ds`. This approach will be significantly faster
than interpolating at full resolution, but will potentially
produce less accurate or reliable results.
verbose : bool, optional
Print debugging messages. Default False.
**kwargs :
Optional keyword arguments to pass to either
`scipy.interpolate.griddata` (if `method` is 'linear', 'nearest'
or 'cubic'), or `scipy.interpolate.Rbf` (is `method` is 'rbf').
Returns
-------
interp_2d_array : xarray DataArray
An xarray DataArray containing with x and y coordinates copied
from `ds_array`, and Z-values interpolated from the points data.
"""
warnings.warn(
"This function is deprecated and will be retired in a future "
"release. Please use `xr_interpolate` instead.",
DeprecationWarning,
stacklevel=2,
)
# Extract xy and elev points
points_xy = np.vstack([x_coords, y_coords]).T
# Extract x and y coordinates to interpolate into.
# If `factor` is greater than 1, the coordinates will be subsampled
# for faster run-times. If the last x or y value in the subsampled
# grid aren't the same as the last x or y values in the original
# full resolution grid, add the final full resolution grid value to
# ensure data is interpolated up to the very edge of the array
if ds.x[::factor][-1].item() == ds.x[-1].item():
x_grid_coords = ds.x[::factor].values
else:
x_grid_coords = ds.x[::factor].values.tolist() + [ds.x[-1].item()]
if ds.y[::factor][-1].item() == ds.y[-1].item():
y_grid_coords = ds.y[::factor].values
else:
y_grid_coords = ds.y[::factor].values.tolist() + [ds.y[-1].item()]
# Create grid to interpolate into
grid_y, grid_x = np.meshgrid(x_grid_coords, y_grid_coords)
# Apply scipy.interpolate.griddata interpolation methods
if method in ("linear", "nearest", "cubic"):
# Interpolate x, y and z values
interp_2d = scipy.interpolate.griddata(
points=points_xy,
values=z_coords,
xi=(grid_y, grid_x),
method=method,
**kwargs,
)
# Apply Radial Basis Function interpolation
elif method == "rbf":
# Interpolate x, y and z values
rbf = scipy.interpolate.Rbf(x_coords, y_coords, z_coords, **kwargs)
interp_2d = rbf(grid_y, grid_x)
# Create xarray dataarray from the data and resample to ds coords
interp_2d_da = xr.DataArray(
interp_2d, coords=[y_grid_coords, x_grid_coords], dims=["y", "x"]
)
# If factor is greater than 1, resample the interpolated array to
# match the input `ds` array
if factor > 1:
interp_2d_da = interp_2d_da.interp_like(ds)
return interp_2d_da
[docs]
def contours_to_arrays(gdf, col):
"""
This function converts a polyline shapefile into an array with three
columns giving the X, Y and Z coordinates of each vertex. This data
can then be used as an input to interpolation procedures (e.g. using
a function like `interpolate_2d`.
Last modified: October 2021
Parameters
----------
gdf : Geopandas GeoDataFrame
A GeoPandas GeoDataFrame of lines to convert into point
coordinates.
col : str
A string giving the name of the GeoDataFrame field to use as
Z-values.
Returns
-------
A numpy array with three columns giving the X, Y and Z coordinates
of each vertex in the input GeoDataFrame.
"""
warnings.warn(
"This function is deprecated and will be retired in a future "
"release. Please use `extract_vertices` instead.",
DeprecationWarning,
stacklevel=2,
)
coords_zvals = []
for i in range(0, len(gdf)):
val = gdf.iloc[i][col]
try:
coords = np.concatenate(
[np.vstack(x.coords.xy).T for x in gdf.iloc[i].geometry.geoms]
)
except:
coords = np.vstack(gdf.iloc[i].geometry.coords.xy).T
coords_zvals.append(
np.column_stack((coords, np.full(np.shape(coords)[0], fill_value=val)))
)
return np.concatenate(coords_zvals)
[docs]
def largest_region(bool_array, **kwargs):
"""
Takes a boolean array and identifies the largest contiguous region of
connected True values. This is returned as a new array with cells in
the largest region marked as True, and all other cells marked as False.
Parameters
----------
bool_array : boolean array
A boolean array (numpy or xarray.DataArray) with True values for
the areas that will be inspected to find the largest group of
connected cells
**kwargs :
Optional keyword arguments to pass to `measure.label`
Returns
-------
largest_region : boolean array
A boolean array with cells in the largest region marked as True,
and all other cells marked as False.
"""
# First, break boolean array into unique, discrete regions/blobs
blobs_labels = label(bool_array, background=0, **kwargs)
# Count the size of each blob, excluding the background class (0)
ids, counts = np.unique(blobs_labels[blobs_labels > 0], return_counts=True)
# Identify the region ID of the largest blob
largest_region_id = ids[np.argmax(counts)]
# Produce a boolean array where 1 == the largest region
largest_region = blobs_labels == largest_region_id
return largest_region
[docs]
def zonal_stats_parallel(shp, raster, statistics, out_shp, ncpus, **kwargs):
"""
Summarizing raster datasets based on vector geometries in parallel.
Each cpu recieves an equal chunk of the dataset.
Utilizes the perrygeo/rasterstats package.
Parameters
----------
shp : str
Path to shapefile that contains polygons over
which zonal statistics are calculated
raster: str
Path to the raster from which the statistics are calculated.
This can be a virtual raster (.vrt).
statistics: list
list of statistics to calculate. e.g.
['min', 'max', 'median', 'majority', 'sum']
out_shp: str
Path to export shapefile containing zonal statistics.
ncpus: int
number of cores to parallelize the operations over.
kwargs:
Any other keyword arguments to rasterstats.zonal_stats()
See https://github.com/perrygeo/python-rasterstats for
all options
Returns
-------
Exports a shapefile to disk containing the zonal statistics requested
"""
# yields n sized chunks from list l (used for splitting task to multiple processes)
def chunks(l, n):
for i in range(0, len(l), n):
yield l[i : i + n]
# calculates zonal stats and adds results to a dictionary
def worker(z, raster, d):
z_stats = zonal_stats(z, raster, stats=statistics, **kwargs)
for i in range(0, len(z_stats)):
d[z[i]["id"]] = z_stats[i]
# write output polygon
def write_output(zones, out_shp, d):
# copy schema and crs from input and add new fields for each statistic
schema = zones.schema.copy()
crs = zones.crs
for stat in statistics:
schema["properties"][stat] = "float"
with fiona.open(out_shp, "w", "ESRI Shapefile", schema, crs) as output:
for elem in zones:
for stat in statistics:
elem["properties"][stat] = d[elem["id"]][stat]
output.write(
{
"properties": elem["properties"],
"geometry": mapping(shape(elem["geometry"])),
}
)
with fiona.open(shp) as zones:
jobs = []
# create manager dictionary (polygon ids=keys, stats=entries)
# where multiple processes can write without conflicts
man = mp.Manager()
d = man.dict()
# split zone polygons into 'ncpus' chunks for parallel processing
# and call worker() for each
split = chunks(zones, len(zones) // ncpus)
for z in split:
p = mp.Process(target=worker, args=(z, raster, d))
p.start()
jobs.append(p)
# wait that all chunks are finished
[j.join() for j in jobs]
write_output(zones, out_shp, d)
[docs]
def reverse_geocode(coords, site_classes=None, state_classes=None):
"""
Takes a latitude and longitude coordinate, and performs a reverse
geocode to return a plain-text description of the location in the
form:
Site, State
E.g.: `reverse_geocode(coords=(-35.282163, 149.128835))`
'Canberra, Australian Capital Territory'
Parameters
----------
coords : tuple of floats
A tuple of (latitude, longitude) coordinates used to perform
the reverse geocode.
site_classes : list of strings, optional
A list of strings used to define the site part of the plain
text location description. Because the contents of the geocoded
address can vary greatly depending on location, these strings
are tested against the address one by one until a match is made.
Defaults to: `['city', 'town', 'village', 'suburb', 'hamlet',
'county', 'municipality']`.
state_classes : list of strings, optional
A list of strings used to define the state part of the plain
text location description. These strings are tested against the
address one by one until a match is made. Defaults to:
`['state', 'territory']`.
Returns
-------
If a valid geocoded address is found, a plain text location
description will be returned:
'Site, State'
If no valid address is found, formatted coordinates will be returned
instead:
'XX.XX S, XX.XX E'
"""
# Run reverse geocode using coordinates
geocoder = Nominatim(user_agent="Digital Earth Australia")
# Create plain text-coords as fall-back
lat = f"{-coords[0]:.2f} S" if coords[0] < 0 else f"{coords[0]:.2f} N"
lon = f"{-coords[1]:.2f} W" if coords[1] < 0 else f"{coords[1]:.2f} E"
try:
# Get address from geocoded data
out = geocoder.reverse(coords)
address = out.raw["address"]
# Use site and state classes if supplied; else use defaults
default_site_classes = [
"city",
"town",
"village",
"suburb",
"hamlet",
"county",
"municipality",
]
default_state_classes = ["state", "territory"]
site_classes = site_classes if site_classes else default_site_classes
state_classes = state_classes if state_classes else default_state_classes
# Return the first site or state class that exists in address dict
site = next((address[k] for k in site_classes if k in address), None)
state = next((address[k] for k in state_classes if k in address), None)
# If site and state exist in the data, return this.
# Otherwise, return N/E/S/W coordinates.
if site and state:
# Return as site, state formatted string
return f"{site}, {state}"
else:
# If no geocoding result, return N/E/S/W coordinates
print("No valid geocoded location; returning coordinates instead")
return f"{lat}, {lon}"
except (KeyError, AttributeError, GeocoderUnavailable, GeocoderServiceError):
# If no geocoding result, return N/E/S/W coordinates
print("No valid geocoded location; returning coordinates instead")
return f"{lat}, {lon}"
[docs]
def hillshade(dem, elevation, azimuth, vert_exag=1, dx=30, dy=30):
"""
Calculate hillshade from an input Digital Elevation Model
(DEM) array and a sun elevation and azimith.
Parameters:
-----------
dem : numpy.array
A 2D Digital Elevation Model array.
elevation : int or float
Sun elevation (0-90, degrees up from horizontal).
azimith : int or float
Sun azimuth (0-360, degrees clockwise from north).
vert_exag : int or float, optional
The amount to exaggerate the elevation values by
when calculating illumination. This can be used either
to correct for differences in units between the x-y coordinate
system and the elevation coordinate system (e.g. decimal
degrees vs. meters) or to exaggerate or de-emphasize
topographic effects.
dx : int or float, optional
The x-spacing (columns) of the input DEM. This
is typically the spatial resolution of the DEM.
dy : int or float, optional
The y-spacing (rows) of the input input DEM. This
is typically the spatial resolution of the DEM.
Returns:
--------
hs : numpy.array
A 2D hillshade array with values between 0-1, where
0 is completely in shadow and 1 is completely
illuminated.
"""
from matplotlib.colors import LightSource
hs = LightSource(azdeg=azimuth, altdeg=elevation).hillshade(
dem, vert_exag=vert_exag, dx=dx, dy=dy
)
return hs
[docs]
def sun_angles(dc, query):
"""
For a given spatiotemporal query, calculate mean sun
azimuth and elevation for each satellite observation, and
return these as a new `xarray.Dataset` with 'sun_elevation'
and 'sun_azimuth' variables.
Parameters:
-----------
dc : datacube.Datacube object
Datacube instance used to load data.
query : dict
A dictionary containing query parameters used to identify
satellite observations and load metadata.
Returns:
--------
sun_angles_ds : xarray.Dataset
An `xarray.set` containing a 'sun_elevation' and
'sun_azimuth' variables.
"""
from datacube.api.query import query_group_by
from datacube.model.utils import xr_apply
# Identify satellite datasets and group outputs using the
# same approach used to group satellite imagery (i.e. solar day)
gb = query_group_by(**query)
datasets = dc.find_datasets(**query)
dataset_array = dc.group_datasets(datasets, gb)
# Load and take the mean of metadata from each product
sun_azimuth = xr_apply(
dataset_array,
lambda t, dd: np.mean([d.metadata.eo_sun_azimuth for d in dd]),
dtype=float,
)
sun_elevation = xr_apply(
dataset_array,
lambda t, dd: np.mean([d.metadata.eo_sun_elevation for d in dd]),
dtype=float,
)
# Combine into new xarray.Dataset
sun_angles_ds = xr.merge(
[sun_elevation.rename("sun_elevation"), sun_azimuth.rename("sun_azimuth")]
)
return sun_angles_ds